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[1] Agyrotropy is a scalar measure of the departure of the pressure tensor from cylindrical
symmetry about the local magnetic field direction. Ordinarily electrons are well modeled
as gyrotropic with very small agyrotropy. Intensified layers of electron agyrotropy are
demonstrated to highlight the thin electron gyroradius scale boundary regions adjoining
separatrices, X and O lines of full particle simulations of collisionless magnetic
reconnection. Examples are presented to show these effects in antiparallel and guide field
geometries, pair plasmas, and simulations at a variety of mass ratios, including a hydrogen
plasma. Agyrotropy has been determined from the PIC pressure tensor using a new, fast
algorithm developed to correct discreteness contributions to the apparent agyrotropy. As a
local scalar diagnostic, agyrotropy is shown to be potentially useful with single spacecraft
data to identify the crossing or proximity of electron scale current layers, thus providing a
kinetic level diagnosis of a given layer’s ability to be a possible site of the collisionless
reconnection process. Such kinetic tools are certainly complimentary to the other
macroscopic signatures of reconnection. Because of the extreme circumstances required for
electron agyrotropy, detection of these signatures with framing macroscopic signatures
might prove useful for the discovery of new reconnection sites in nature and 3-D codes of
collisionless reconnection. The agyrotropy in the 2-D PIC codes reflect long-lived bulges on
the distribution function that appear to be organized by the direction and size of slowly
evolving perpendicular electric fields in these layers and are not consistent with gyrophase
bunching.
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1. Introduction

[2] In situ evidence of the occurrence of collisionless
magnetic reconnection (CMR) in space plasmas was initially
provided by corollaries of CMR in macroscopic variables,
such as flows and magnetic components that were external
to the reconnection layer proper. Pioneering attempts in this
vein were made by Paschmann et al. [1979] and Sonnerup
et al. [1981], who identified accelerations of the Walen
[1944] type, certifying rotational discontinuities embedded
in the magnetopause current layer, a corollary to the
presence of a normal component of B at the magnetopause.
Recently the experimental focus has shifted toward finding
the kinetic signatures of CMR at work [Scudder et al., 2002;
Mozer, 2005], specifically those signatures of the innermost
‘‘Electron Diffusion Region’’ (EDR). Recent results from
large scale kinetic simulations [Daughton et al., 2006;
Karimabadi et al., 2007; Shay et al., 2007] as well as space
observations [Phan et al., 2007] suggest that the length of
the EDR may be much larger than previously thought [Shay

et al., 2001; Hesse et al., 1999]. As a consequence, these
highly elongated electron layers may play an important role
in determining the time dependence and macroscopic evo-
lution of the reconnection process. These recent develop-
ments point to the need for new observational techniques to
better identify and characterize the EDR in magnetospheric
plasmas. This shift of focus requires better spatial (temporal)
resolution and new tools for finding and identifying these
very narrow layers (2–10 km at the forward magnetopause).
While the Walen style acceleration corollaries of reconnec-
tion remain important to the context of certifying large scale
consequences of reconnection layers, there is an increasing
awareness that the Walen signatures by themselves are not
conclusive in the absence of identifying the associated EDR.
[3] With this change in focus there are new observational

challenges that are also theoretical ones. Where in the CMR
layer were the measurements acquired? This in turn requires
an agreed upon set of properties of each of these layers; at
present this is not a completed process. In the interim,
various ad hoc ‘‘properties’’ have been used to chart, if not
define, the observer’s path [Mozer, 2005]. Immersion in the
ion diffusion region is conflicted by the simulations that
report no generic ‘‘expected’’ Hall pattern [Rogers et al.,
2001]. Even depressions of B do not qualify for passing
through a diffusion region! [e.g., Lemaire and Burlaga,
1976]. New empirical sieves with strong theoretical foun-
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dations are required to screen identified current sheets for
their convincing relevance as an EDR enabling site for
reconnection. Since the electrons are locally disrupted in the
EDR, the screen for being in the electron diffusion region
should, if at all possible, be electron specific, not just a
compressible magneto-hydrodynamic corollary (such as
there must be a parallel E) that could be confused with less
radical explanations. A significant difficulty for the confi-
dent location of the EDR is that the properties of the EDR
have not been established by analytic theory, jump con-
ditions, or numerical solution of MHD or Hybrid models of
the reconnection layer, since all these models suffer from
the unknown closure equations for the plasma [Scudder,
1997]. This paper is an approach to this problem of labeling
and finding EDR layers using a new tool, the electron
agyrotropy AØe, a broken symmetry of the electron pressure
tensor that indexes local demagnetization of the electrons.
[4] Fully kinetic PIC simulations of reconnection layers

possess the generality necessary to benchmark self-consis-
tent observables of reconnection layers and hence, traversal
of the EDR. Such simulations (i) possess a global overview
of all the parts of the electrodynamics at a given time,
(ii) permit a record of all spatial and velocity space observ-
ables and relatives (vector potential, electrical potential, and
species streamlines) that are essential to understanding the
evolving dynamics, and (iii) are at present the only self-
consistent theoretical model of CMR that breaks the frozen
flux condition in a model independent way, forgoing ad hoc
equations of state and ad hoc resistivity models that limit the
generality of the prediction of MHD, two-fluid, or hybrid
treatments.
[5] In this paper (i) we introduce theoretical and compu-

tational arguments that the agyrotropy AØe of the electron
pressure tensor (its departure from cylindrical symmetry
about the local magnetic field direction) is in principle, a
presently measurable scalar diagnostic of EDRs both for
PIC simulations and space plasma instruments, that capably
differentiates X and O point topologies. We also (ii) analyze
the ‘‘forward’’ problem of the occurrence and relation of
agyrotropy enhancements to their known separatrices and
separators of their CMR layers determined by flux surfaces
from the vector potential within a variety of 2-D PIC
simulations. In this way we seek to motivate the use of
agyrotropy as a (single spacecraft) marker for electron
gyroradius scale layers that are prerequisite to electron
gyroviscous support of the reconnection electric field. We
also have sketched the difficulties for such measurements
that arise from aliasing and other consideration. It would
appear that this argument (a) can be transferred into 3D
simulations to locate EDRs (since no flux labeling is
possible there from the vector potential) and (b) to aid the
‘‘inverse’’ problem of finding and screening candidate
current layers in spacecraft data as Electron Diffusion
Regions (EDRs), especially when magnetic nulls are not
intercepted.
[6] The paper is comprised of seven sections: Definition

of AØe and Its Association With Collisionless Magnetic
Reconnection (CMR); If Agyrotropy Were Observable,
What Could Be Seen?; Agyrotropy Is Presently Detectable;
Agyrotropy Determinations From PIC Simulations; Recov-
ery of Analytic Results for AØ of Harris [1962] Equilibrium

With Background; Associating Agyrotropy and Toplogical
Boundaries; and Summary and Discussion.

2. Definition of AØe and Its Association With
Collisionless Magnetic Reconnection (CMR)

[7] The pressure tensors of the plasma P
$

j contain the
velocity space average of the stresses that result from all
guiding center drifts and finite Larmor radius (FLR) effects
[Parker, 1957]. Vasyliunas’s [1975] review argued persua-
sively that steady CMR in 2-D was only possible with the
assistance of momentum transfers implied by steady spatial
gradients of the electron pressure tensor P

$

e (x); further, he
argued that these effects could only occur when P

$

e (x) was
agyrotropic AØe 6¼ 0, in the vicinity of the null point. This
argument does not say how the tensor becomes demagne-
tized, but does require a time independent non-gyrotropic
pressure tensor. Recent kinetic 2-D PIC simulations for this
and other geometries have tended to reinforce this theoret-
ical argument, showing that the ‘‘electron-gyroviscous’’
effect made possible by the divergence of the electron
pressure tensor was the principal supporting term for the
reconnection electric field at the separator [Hesse et al.,
1995; Kuznetsova et al., 1998; Pritchett, 2001; Ricci et al.,
2004; Daughton et al., 2006; Karimabadi et al., 2007].
However, there remains the logical possibility that other
terms in the time averaged generalized Ohm’s law, loosely
referred to as ‘‘anomalous resistivity’’ effects, might play an
unforeseen role, either away from the separator in 2-D
layers, or be permitted in 3-D current layers where new k
are possible [e.g., Drake et al., 2002]. Although 3-D
simulations of reconnection are in their infancy, the limited
information from them indicates the persistence in 3-D of
the 2-D effects of the pressure tensor. The present paper
focuses on diagnostics for the already identified ‘‘electron-
gyroviscous’’ contributions to the reconnection electric field
and finding ways to locate regions narrow enough to play
such a role.
[8] Throughout this paper, we adopt the traditional defini-

tion for a species to be magnetized: the typical gyroradius Rj,
of the j’th species with perpendicular random velocity w?j

and bulk velocity U?j (determined by the average
perpendicular speed hv?ji = hjU?j + w?jji and the condition
Rj = hv?ji/Wcj, where the denominator is the species
cyclotron frequency), should be small compared to the
scale of the spatial variations of forces encountered, L, viz
Rj/L � 1; in addition it is required that the external and
explicit time dependence experienced is slow compared to
its gyro frequency [Rossi and Olbert, 1970; Hasegawa,
1975; Golant et al., 1980; Hazeltine and Waelbroeck, 1998;
Bellan, 2006]. In the subthermal flow regimes R ! r, the
thermal gyroradius, while in superthermal flow Rj ! U?j/
Wcj, the convected inertial length often used in collisionless
shocks. This approximation is known variously as the
Alfven approximation, the adiabatic approximation, the
guiding center approximation, or even the drift kinetic
approximation; it is usually invoked for plasmas where the
magnetic field is strong, allowing the velocity distribution
function to be well modeled in its rest frame as a function of
parallel velocity and perpendicular speed:f(vk, v?), and the
pressure tensor to be simplified to a field aligned diagonal
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representation with two equal eigenvalues transverse to the
magnetic field.
[9] The opposite regime where electron are demagnetized

is reflected in nonzero AØe, defined as the absolute value of
the difference divided by the average of the two pressure
eigenvalues associated with eigenvectors perpendicular to
the mean magnetic field direction:

A�e ¼ 2
P?e1 � P?e2j j
P?e1 þ P?e2

: ð1Þ

Gyrotropic plasmas, presumed in the drift kinetic equation,
have AØ � 0; agyrotropy is bounded from above by the
extreme value of 2. An explicit technique for isolating the
two perpendicular eigenvalues of the pressure tensor, even
when it is agyrotropic, is fully discussed in Appendix A. In
the supersonic regime (as with ions behind a shock wave)
the demagnetization of the bulk flow allows a strong
exchange between flow and random energies that will not
initially be organized by the magnetic field direction.
Accordingly the signatures of agyrotropy of the subsonic
type as in 1 is sufficiently general to intercept both types of
demagnetization whether the violation is one associated the
convected inertial length or the gyroradius.
[10] The electron thermal gyro radius re, skin depth de =

c/wpe, and Debye length lDe, are usually the three smallest
scale lengths in a plasma, with re and de interchanging
relative sizes when b?e passes unity. The scale L of most
obstacles and gradients in astrophysical plasmas are much
larger than any of these, and the electrons are justifiably
modeled as magnetized. As presently theoretically under-

stood [e.g., Chacon et al., 2007], CMR layers involve
magnetic gradient scales LB ’; de. Since Re � re � b?e

1/2

de the strongest current layers of CMR flows will
involve demagnetized thermal electrons and hence
electron agyrotropy, certainly in antiparallel geometries.
Simulation evidence as in Figure 1 below and that of
Hesse et al. [1999], Pritchett [2001], and experimental
data [Scudder and Mozer, 2005] suggest, however, that
even in the presence of guide fields that the electrons
can become demagnetized, generating gyroviscous con-
tributions to E. At the present point of CMR research,
electron agyrotropy appears to be essential to the process
of magnetic reconnection. Some ask whether it is a
cause or a consequence. While this is not firmly
established, a point of view can be consistently held
that as current layers thin toward electro gyro scales,
there comes a point when a sufficient part of the thermal
electrons are all non-guiding center ordered by the short
scales and the orderly labeling of flux tubes in time
must be suspended. With that view the agyrotropy of the
electrons is the marker of that transition. Both it and
CMR are commonly facilitated by the thinning of
current sheets to such a disruptive scale. From this
vantage point there is neither a cause nor consequence,
they attend one another. The formation of such thin
scales is rare. However, there are Vlasov equilibria that
possess steady state electron agyrotropy without being
reconnecting layers; such layers are, however, highly
unstable to tearing.
[11] Agyrotropy should, however, only rarely be expected

in space plasma data, given the successes of the last 50 years

Figure 1. Spatial variation of electron agyrotropy AØe (x, y, t Wci = 43) during evolution of a perturbed
Harris sheet with 30% background density, a guide field 50% that of the reconnecting field, mi/me = 25,
Ti/Te = 5, and wpe/Wce = 3 at tWci = 43.4. (top) Color coded spatial variation of AØe; (bottom) AØe from
the upper panel with superposed white curves that locate mathematically exact magnetic flux surfaces
from the vector potential. Attention is drawn to the pattern of nonzero AØe that presages the location of
the flux separatrices and highlights the X point and the other topological structures of B in formation.
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of understanding large volumes of near earth and solar
system plasmas with collisionless ideal, but anisotropic
(gyrotropic) MHD [cf. Burlaga, 1995]. The pervasive
expectation of gyrotropic electrons in space plasmas is also
the rationale for in flight intracalibration schemes [e.g.,
Scudder et al., 1995]. The short scale condition for electrons
that leads to nonzero AØe is almost synonymous with the
non-ideal behavior expected in the EDR of the CMR layer.
Accordingly, the a priori occurrence of AØe is much rarer
than the incidence of accelerations of a rotational disconti-
nuity that satisfy the Walen test. By this argument, validated
detections of AØe would indicate a much closer proximity to
the EDR of the CMR than the certification of Walen
accelerations. The strongest experimental identification for
CMR in action would be supporting signatures of demag-
netization of the EDR and the surrounding, external accel-
erations to complete the evidence of topology change.
Either diagnostic by itself is weaker than their coordinated
detection. Isolated detection of relatively rare AØe should be
more diagnostic of locale than isolated detection of Walen
style accelerations. Hence in terms of proximity to non-
ideal effects we suggest detection of both AØe and Walen
accelerations as more sure, than AØe alone, with Walen
accelerations detections being the least surgical identifica-
tion technique when used alone.
[12] From the structure of the electron form of the frozen

flux theorem [Rossi and Olbert, 1970] there are only two
types of violations of the frozen flux theorem: those from
pressure stresses (which also include ‘‘inertial effects,’’ and
those associated with momentum transfer enabled by time
dependence). The steady state slippage of the magnetic flux
envisaged at sites of CMR occurs at gradients in current
layers so steep that the thermal electrons (the bulk of the
flux and pressure by number) experience non-adiabatic FLR
corrections, leaving the ‘‘fingerprint’’ of this disruption in
their pressure tensor, guaranteeing a nonzero AØe as demon-
strated below. Since these same electrons determine the local
electron fluid velocity, these disruptions also imply that the
‘‘inertial’’ terms to the generalized Ohm’s law will also play a
potentially dominant role in areas where the electron flows
are superthermal.

3. If Agyrotropy Were Observable, What Could
Be Seen?

[13] Agyrotropy is illustrated in Figures 1a and 1b as
determined from a two dimensional, full PIC simulation of a
reconnecting current sheet with a guide field equal to the
reconnecting fields, wpe/Wce = 3, and mi/me = 25. An initial
perturbation is employed to initiate reconnection and open
boundary conditions [Daughton et al., 2006] are used along
all boundaries. The upper panel (Figure 1a) displays a two
dimensional snapshot of the spatial variations of the elec-
tron agyrotropy AØe that is strongly enhanced in an
X pattern, suggestive of a saddle point; hints occur at the
right of center of the formation of a secondary X with an
intermediate O type boundary. These impressions are con-
firmed in the lower panel where the pattern of field lines,
determined mathematically by the isocontours of the vector
potential Az, have been superposed on the AØe intensity
surface Even if Az (t) were an observable, or could be
locally reconstructed, it varies smoothly across the separa-

trices, providing no model independent way to establish the
locale of the spacecraft observations. By contrast, the profile
of AØe has a perceptible, structured nonzero enhancement
inside the separatrices or about the separator region and then
only near where a spatial organization reflects that of the
flux surfaces. AØe (t) is potentially an observable from
spacecraft data, the flux surfaces in 1b are not. Even the
magnetic field does not give a strong indication of proximity
to the separatrices. In this way we demonstrate that agyro-
tropy locally ‘‘illuminates’’ the locale of the separatrices and
separator environs of the reconnection layer.
[14] Careful inspection shows that the layers of enhanced

AØe occur on the outflow side of the separatrices, rather
than precisely astride them. The local ‘‘marker’’ provided
by AØe is a distinct improvement for the observer struggling
to identify events as being in different non-ideal regimes of
the reconnection layer. This is not a working hypothesis, but
demonstrated in a nearly model free way by superposing the
contours of flux surfaces on AØe (an observable from in situ
plasma measurements of size demonstrated below to be
detectable). Movies of the simulations also illustrate the
patterns of agyrotropy evolving slowly of ion timescales.
We show below (see Figure 7) that one of the two
orthogonal transverse pressure eigenvectors is essentially
aligned with E? when AØe 6¼ 0 ; it is also known that the
pattern of E? evolves on the ion timescale. From these facts
we conclude that the agyrotropic bulge pattern on fe (v)
must be maintained at or 0� or 90� to the direction of Ê?,
rather than possibly precessing as a gyrophase bunched
group of electrons.
[15] AØe is strongest at the principal X separator of

Figure 1a, but contiguous regions along the separatrices
are also illuminated and appear to be a spatially structured
extensions of the same agyrotropic layer of reduced size.
The demagnetization (AØe > 0) has different levels through-
out a region that starts at the separator but extends on ion
scales - not only along the horizontal electron exhausts jets
[Daughton et al., 2006; Karimabadi et al., 2007], but also
out along the separatrices which are the probable locale of
most of the DEFE events reported by Scudder and Mozer
[2005]. This demagnetized region is a non-convex region
with curved ‘‘arms’’ emanating from a more convex highly
elongated rectangular central region where the pro-
nounced electron jetting is located [Daughton et al.,
2006; Karimabadi et al., 2007; Shay et al., 2007]; the
arms have a finite thickness perpendicular to, but inside
the mathematical separatrices. Electron agyrotropy near the
X-separator and parallel to the exhaust is usually seen in
the PIC code as two stretched, quasi-parallel and slightly
curved ribbons, with a third ribbon at times between these
two which look like the two ribbons of agyrotropy seen in
the Harris equilibrium illustrated below.

4. Agyrotropy Is Presently Detectable

[16] We use Figure 2 to illustrate that plasma detectors
already flown in space are in principle sufficiently capable
to determine agyrotropy of the size seen in the examples
throughout this paper. We show the fractional difference in
perpendicular eigenvalues of the pressure tensor as function
of the size of agyrotropy. Agyrotropy of AØe = 0.1 (0.65)
corresponds, for example, to a 10(100)% difference in the
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‘‘temperature’’ (T?e = P?e/nk) e-folding energy half-widths
of fe (v) that must be detected when analyzing fe (v) along
two orthogonal directions, both perpendicular to B.
[17] Typically the temperature eigenvalues are accurate to

a few percent, so that such AØe is readily discernible with
well calibrated electrostatic analyzers designed for space
flight. In this light, nearly all the brightly colored signatures
in Figure 1 are detectable with present instrumentation [cf.
Scudder et al., 2002, 2008]. However, the electron agyro-
tropy is only as precise as the model independent determi-
nation of the pressure tensor (evaluated in the electron’s rest
frame). The observed velocity distribution in space plasmas
fe (v), is actually acquired over an interval of time, and is
usually a convolution over variations in b̂ and background
variables during their acquisition – in contrast with the
snapshot character of the same information from a PIC
code. In addition, the quality of spaceflight estimates of fe
(v) hinge on the Poisson statistics of the measurements (see
Appendix B), the time aliasing interval, the underlying
variations of the plasma traversed, and the size of focusing,
the size of the spacecraft potential, whether the spacecraft is
an equipotential or not, and the detailed mounting of the
sensor apertures relative to the spacecraft skin. Agyrotropy
detection may not be easy, but the PIC simulations highlight
their potential benefits.
[18] With a well calibrated electron plasma detector on a

small, equipotential spacecraft the subsequent data analysis
stream should have a near zero modal value of agyrotropy.
Sporadic violations of gyrotropy as exceptions of the more
common gyrotropy have been reported near a magnetic null
at the earth’s magnetopause [cf. Scudder et al., 2002,

section 6]. Recently, departures from gyrotropy have been
reported in ‘‘guide geometry’’ layer near the cusp using
Cluster data (D. E. Wendel et al., Magnetic structure and
particle flow at a northward interplanetary magnetic recon-
nection site, submitted to Journal of Geophysical Research,
2007), but no baseline of routine gyrotropy recovery was
presented, nor was a baseline of recovery of electron bulk
velocity versus E � B determinations in unperturbed
regimes documented. Certainly all such suggestions of
detection of agyrotropy should be held to the highest
experimental standards of scrutiny, particularly for their
susceptibility to convolution effects and/or sensitivity to
the precise time order of data acquisition. In particular,
sensors that rely on slow spacecraft spin to acquire full sky
coverage in velocity space will be especially disadvantaged
in this quest to determine agyrotropy. Similarly, any tech-
nique for acquiring the distribution that cannot address the
underlying reorientation of the magnetic field during the
assembling of f(v) will also suffer from serious aliasing.
These two brief sentences highlight the experimental chal-
lenge for observing agyrotropy. This paper is about the
rewards for undertaking this challenge either with experi-
ments up to the difficulties, or, possibly the design of
instruments and measurement chains optimized for its
detection, such as might be possible on the upcoming
MMS mission. The local and ‘‘event’’ character of agyro-
tropy for reconnection studies are persuasive motivators to
design spacecraft measurement sequences that allow in
flight intracalibration of multisensor analyzers and post
measurement assessments of possible time aliasing, to

Figure 2. Relationship between agyrotropy and percentage separation of perpendicular eigenvalues of
pressure tensor. These values are like the energy e-foldings of the distribution function. Agyrotropy of the
size suggested in Figure 1 and elsewhere are well within present electrostatic analyzer detector
capabilities. Temperature eigenvalues are strictly proportional to pressure eigenvalues.
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yield the pressure tensor asymmetries beyond anisotropy
[Holdaway et al., 2008].

5. Agyrotropy Determinations From PIC
Simulations

[19] Is the precision of AØe in Figure 1 adequate to guide
an experimental search for features in the EDR? From an
‘‘experimental’’ perspective a snapshot of the PIC code
solution is free from detector intracalibration issues, space-
craft potential effects, and totally uncompromised by time
aliasing issues. If there are systematic difficulties with
computing AØe these may be studied in a more controlled
way in the PIC environment than with spacecraft data
directly. In this section we document a procedure for
determining agyrotropy, once the full electron pressure
tensor is known. We then demonstrate recovery by our
procedure of the analytically known agyrotropy for the
initial Harris equilibrium with background. Common con-
ceptual issues between PIC and spacecraft determinations of
AØe have been identified and overcome by this approach.
Succinctly, the apparent broken cylindrical symmetry AØe*,
determined directly from the pressure tensor can depend on
the number N, of particles that approximate the underlying
velocity probability distribution fe (v). Fortunately there
exists a first order approach to correct for this sensitivity
to more nearly recover a better approximation of the Vlasov
agyrotropy diagnostic we desire.
[20] In PIC and space applications the actual amplitude of

the sensitivity depends on the method of integration used to
determine the pressure tensor; however, the scaling of these
effects in both domains goes like N�1/2 where N is the
number of computational particles per cell. The finite size
of N guarantees there is a limit to the symmetry breaking
than can be determined by fe (v), approximated by
N particles. With a finite number of particles approximating
the velocity distribution function, even a truly gyrotropic
‘‘parent’’ f(v) would be approximated in PIC by a ‘‘bumpy’’
distribution with a computed agyrotropy AØ*, that would
have a finite N, ‘‘discreteness’’ contribution that would
disappear in the large N limit. With PIC and space measure-
ments pragmatic choices determine the achievable sizes of
N. However, N in a given cell (spectrum) is also a function
of time and will have different values as the dynamics of the
CMR proceeds or the spacecraft moves through plasma
regimes.
[21] Before tackling the spatial and time dependent nature

of this difficulty we attack a simpler problem: ‘‘What is the
computed agyrotropy AØ* when N-particle distributions are
drawn from Vlasov gyrotropic parent distribution’’? In
Appendix B we answer this question by establishing the
inverse square root dependence of this artifact for 10 < N <
106 and determine for our PIC code the proportionality
constant, power law and their errors by a least squares
procedure. We also establish there that repetitive draws of
N particles at random from a gyrotropic distribution yielded
log normal deviates from the best predictor at a given N.
Knowing the statistics of this noise term we calculate at
various levels of precision in Appendices C and D the
expected functional relationship between apparent agyro-
tropy AØ* = Z (AØ, N), assuming a general, nonzero

underlying Vlasov value AØ, and N. This relationship is
generally invertible, so that knowledge of N and AØ* can
predict a significantly more accurate value of AØ =
Z

�1(AØ*, N). This inverse interpolation ‘‘compensation’’
procedure is different than subtracting a floor that is a
function of N alone, since when AØ is large enough the
discreteness effects are negligible, whereas the floor
procedure would erroneously reduce peak agyrotropies
in such a regime. As illustrated by the surface for Z in
Appendix C, different parts of a spatially inhomogeneous
solution will have varying degrees of correction applied
by this procedure. Figure 1 above was constructed with
this compensation technique and is our best representation
of AØe for that PIC solution.

6. Recovery of Analytic Results for AØ of Harris
Equilibrium With Background

[22] To demonstrate the quality of this procedure we
consider the recovery by it of the analytically known
agyrotropy of the Harris equilibrium with background. This
approach does not endorse the Harris plus background
model as appropriate for any geophysical regime. We only
use it as a model to ‘‘test’’ parameter recovery of our
agyrotropy determinations. The antiparallel Harris sheet
model has a density profile n (c) = no sech

2c, a stationary
background at the same species temperatures with density
nb � e no. Each species bulk speed Uj is its diamagnetic
drift speed. Identifying species gyroradii rj (defined at the
asymptotic B far away from the current sheet) such a sheet
has equilibrium, species dependent agyrotropy of the form

A�Harris
j ¼

2nbnoU
2
j

w2
j nosechcþ nb coshcð Þ2þ nbnoU

2
j

¼
2er2j

L2 sechcþ e coshcð Þ2þ er2j
; ð2Þ

where c = x/L is the dimensionless coordinate orthogonal to
the sheet, L is the density’s scale length and wj is the jth
species thermal speed. Agyrotropy results from the flow
shear between the diamagnetic drift current layer and the
static background; the last form of (2) illustrates that
the agyrotropy at current sheet maximum is proportional to
the fractional background density e and the square of the
species gyroradius. The left (right) column of Figure 3
illustrates the analytic trends of (2) with distance c from the
minimum in B for an ion (electron) gyro scale current
sheets. The solid (dashed) trace is the ion (electron)
agyrotropy profile in the chosen density scale current sheet.
In either column we see (i) both ion and electron profiles
have global maxima, two ribbons, at the same dimension-
less distance on either side of the sheet given by the
expression

jcyj ¼ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� e

pffiffiffi
e

p
� �

ð3Þ

determined by e (chosen here to be 0.3); [The proton
maximum in the electron sheet is only 1 part in a million
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higher than the nearby parts of the ion profile.]; (ii) the
agyrotropy at the current sheet crossing is enhanced but
usually not the global maximum; (iii) the profiles of
agyrotropy are rapidly attenuated, approaching gyrotropy
with distance from the current sheet; (iv) the ion
agyrotropy is always larger than the electrons at current
sheets of either scale; and the expected values of AØe,
would be much (!) more detectable with present-day
space plasma measurements at electron scale layers than
ion ones (compare Figure 2).
[23] After the macro-particle distributions were formed

using random number generators from a parent Vlasov
Harris plus background equilibrium, the two eigenvalues
perpendicular to B of the ion and electron pressure tensor
were determined using the methods of Appendix A. The
two columns of the top (bottom) row of Figure 4 contrast
two spatial averaging approaches for recovering the initial
Harris ion (electron) agyrotropy for an ion scale equilibrium,
mi/me = 100. Each panel in Figure 4 contains three estimates
of the agyrotropy based on the PIC pressure tensor: (i) the
expected theoretical variation (black) from (2); (ii) the best,
approximately Vlasov, agyrotropy AØi determined from the
initial distributions of the PIC code (red) using the method

outlined in Appendix A, with discreteness effects remedi-
ated via Appendix D; and (iii) a blue trace that is the direct,
or raw, agyrotropy AØj* determined from the PIC pressure
tensor by the methods of Appendix A, without any correc-
tions for the effects of ‘‘discreteness.’’ In symbols

A�j ¼ Z
�1 A�j

� hPiXYð Þ
� �* +

Ignorable
ð4Þ

where Z
�1 stands for the reconstruction operation outlined

in Appendix D that compensates for the effects of the finite
number of simulation particles. The last spatial averaging
performed is over the ignorable coordinate of the equili-
brium in the simulation plane. Spatial averaging h iXY was
performed over a square of simulation cells centered on the
desired cell, using an odd number of cells on a side.
[24] The results of using two different sized XY spatial

averages of the pressure tensor elements are illustrated in
the two columns of Figure 4: (i) a more vigorous spatial
averaging over 7 � 7 squares in the left hand column is
contrasted with (ii) no spatial averaging in the right hand
column. The full scales on the electron (vs ion) panels are

Figure 3. Harris Sheet with background e = 0.3 for ion (electron) gyroradius scale current layer left
(right), M/m = 1836. Upper rows are predicted agyrotropy from (2) of ions (electrons) with solid (dashed)
curves. Ion AØi is invariably larger than AØe. With the ceiling on agyrotropy of 2, the electron scale layer
allows rather large electron and ion agyrotropies in the same layer, while ion scale current layers have a
negligible electron agyrotropy at true mass ratio. Comparing with Figure 3, AØe is clearly expected to be
detectable in Harris sheet with background if L approaches the electron gyroscale. Lower row illustrates
the magnetic field strength. The spatial scale of left column is c = x/ri while the right hand side is much
narrower in physical space c = x/re. Upper right panel illustrates that local symmetric minimaxes jcyj of
ion and electron agyrotropy (red vertical lines) in the same current sheet occur at the same spatial distance
from current sheet center and is displaced from minimum B. This is also true in right hand panel, but the
minimax is only 1 part in a million larger than value at current sheet maximum.
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chosen to illustrate (i) the much smaller initial, analytical
electron variation of the agyrotropy (black curves) at a
current sheet with ion scales, (ii) the clues concerning
discreteness that the electron processing for agyrotropy
provided, and (iii) the mitigation of discreteness effects
enabled by the post processing discussed in Appendix D.
[25] Far away from the current sheet (at large jxj) the blue

traces for ions and electrons in the same column of Figure 4
give essentially the same values for AØj (note scale differ-
ences); these residual values are determined by the number
of particles per cell, which is virtually the same in these
regions. However, these values are incorrect, as can be seen
by comparing them with the much lower analytical predic-
tions (black). Within species, but across columns, as aver-
aging and N increase, the blue curves at large jxj are
strongly reduced, demonstrating better recovery of gyro-
tropy and agreement with the black theoretical curve. As the
lower row of electron panels exhibit, this averaging helps to
correct for discreteness noise (a) by reducing it, even though
(b) it is incomplete, (c) and does not retrieve with high
fidelity the very weak analytically expected initial agyro-
tropy signal (black) in the electrons at early times starting
with an ion scale Harris sheet and background. Nonetheless
the discreteness correction does ‘‘remove’’ the erroneous
impression of the raw agyrotropy (blue) that the electrons
are more gyrotropic in the current sheet than outside!
[26] Strong ion agyrotropy is expected at this current

sheet since the scale of the sheet is comparable to the ion
thermal gyroradius (see equation (3) and left columns in
Figure 3); the ion profiles (red in top row of Figure 4)
compare favorably with the analytical solution (black) from
equation (3). The recovery for ions of the twin peaked shape
and amplitude is generally excellent, particularly at the
highest values of agyrotropy in the right column (with no

grid averaging) and almost as good with wider averaging
(left column) and even better (than no averaging) at smaller
absolute values of agyrotropy when vigorous averaging is
undertaken (left column). While enhancing the statistics, the
spatial averaging can, however, broaden the profile of
agyrotropy. In the left hand column, the spatial width
represented by the spatial averaging is comparable to the
scale of the curvature scale of the peak in the agyrotropy
profiles, thus causing a slight, but perceptible, smoothing of
the inferred profile at and near its peaks (left hand column
top row). By contrast, the no grid averaging in the right
column recovers the strongest agyrotropy nearly perfectly
throughout the maximum region. However, slight disagree-
ments remain in the no averaging column as the black and
red profiles plummet toward gyrotropic levels. This region
is the part of the agyrotropy recovery curve near the ‘‘noise’’
floor agyrotropy identified in Figure D1 (Appendix D),
when adjusted for the effective number N in that locale.
The better statistics of averaging over 49 cells in the
presence of relatively broad scale of the large jxj variation
allows the vigorous averaging (upper left) to recover the
details of the ion transition to the background gyrotropy,
including very low values outside the sheet.
[27] For perspective the evolving amplitudes of electron

agyrotropy in reconnecting current sheets, as shown in
Figure 1, are comparable to the much larger, initial AØi

values that our procedures recover well in the top row of
Figure 4. This can be understood from the thinning of the
initial ion scale sheet as reconnection gets underway, rapidly
becoming an electron scale current sheet. We conclude that
our technique can measure electron or ion agyrotropy
provided the signal is strong enough (which we make
quantitative between Figures 4, B1, and D2 below). We
have examined other current sheet equilibria (not shown)

Figure 4. Demonstration of recovery (red) of theoretical agyrotropy (in black) of initial Harris sheet
equilibrium. Antiparallel Harris equilibrium 100 � 100di, mi/me = 100, sheet thickness ri/L = 2 and Te =
Ti. Left column: agyrotropy determined by first averaging pressure tensor elements over spatial grid 7 � 7
centered on the desired mesh point. Right column: no spatial averaging of the pressure tensor elements.
All figures contain 3 curves: (i) black is the Harris analytical profile; (ii) blue is the raw agyrotropy AØ*
from techniques of Appendix A only; (iii) red is the best estimate of the Vlasov agyrotropy given the
discreteness effects, using techniques of Appendices A and D. Top row demonstrates strong ion
agyrotropy. Lower row demonstrates expected weaker initial electron agyrotropy (black) of the Harris
equilibrium. Blue curves reflect all contribution including discreteness in AØ*.
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where the peak ion agyrotropy was smaller (0.45) and
obtained similar recovery as illustrated in Figure 4. In a
pair plasma, where the electron and ion agyrotropy should
be identical we have recovered the analytical spatial profiles
for both species with equal precision.

7. Associating Agyrotropy and Toplogical
Boundaries

[28] We now illustrate a variety of PIC simulations of
CMR at Harris current sheets using the lens of AØe. All
simulations use the open boundary condition code fully
described by Daughton et al. [2006]. Figure 5 establishes
the spatial pattern of AØe near ‘‘O’’ points in a pair plasma
layer, confirming the suggestion of Bessho and Bhattacharjee

[2005] that the gyroviscous effects of electrons and ions
cooperate to balance the electric field in this layer. This
example illustrates that the intensification of agyrotropy
occurs near X and O point with different patterns. Near the
‘‘O’’ point there usually are two opposing pear shaped
enhancements of agyrotropy, inscribed by elliptical or nearly
complete ellipses concentric with the O line. In contrast with
the ‘‘X’’ separator in Figure 1 there is no suggestion of an
enhancement of agyrotropy forming a crossing ribbon pattern
like the separatrices seen in the center of Figure 1. From the
lower panel of Figure 5 the outermost elliptical ring about
theO line is actually the continuation of the nearby ‘‘X’’ point
separatrices as they nest the adjacent ‘‘O.’’
[29] The size and extent of the demagnetized current layer

undergoing tearing is highlighted by AØe in Figure 6 for the

Figure 5. Pair plasma in very long system discussed by Daughton and Karimabadi [2007], contrasting
‘‘O’’ diagnosis and attendant double pear shaped pattern of agyrotropy with the different pattern about the
X lines seen near z/d i = 90. Whatever causes the intensified layers is not controlled by whistler physics
which is precluded in the pair plasma considered here.

Figure 6. Antiparallel Harris equilibrium, open boundary conditions, mi/me = 100. Note that the vertical
axis of the figure is grossly magnified relative to the horizontal axis with the purpose of illustrating the
demagnetized Electron Diffusion Region structure along the in and outflow. This differential
magnification greatly reduces the apparent length to width aspect ratio.
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antiparallel, mi/me = 100 perturbed Harris sheet discussed
by Daughton et al. [2006] and Karimabadi et al. [2007].
The electrons in the inflow region are clearly suggested to
be magnetized by our remediated diagnostic. Furthermore,
for the purposes of this figure there is no analog to
averaging over ignorable coordinate in (5) since the evolv-
ing layer has no ignorable coordinate in the solution plane.
In spite of that loss of statistics the remediation technique
does ‘‘correctly’’ indicate that the electrons in the inflow are
strongly magnetized. Without ambiguity this demagnetized
layer possesses an ion scale length along its exhaust of
(15di = 150de) from the separator, while only exhibiting an
electron scale width (0.4di = 4de) along the corresponding
part of the inflow (vertical). These measurements yield an
elongated aspect ratio (length/width) of the demagnetized
rectangular portion of the EDR of 37. The demagnetized
layer is somewhat larger than the out of plane current sheet
which has length to width ratio of 23 which is still large
compared to the early assumptions that-the EDR had scales
ratios of approximately 5, a ‘‘few’’ electron skin depths or
electron turning orbits on a side. The electron pressure
tensor is non-gyrotropic in a spatially structured way that
influences the mechanical force balance [Karimabadi et al.,
2007] over the multiple ion scale electron jet outflow length
of over ±15di = ±150de, a point recently conceded by Shay et
al. [2007]. In the present context we wish to emphasize the
crucial diagnostic role of agyrotropy, especially as it
becomes small, since it has been used to determine the
physical extent of the critical non-ideal electron diffusion
region (EDR) of the layer. Shown in the right inset, the
antiparallel reconnection EDR has a bifurcated agyrotropy
profile along the inflow direction as has been seen in
Figures 1 and 4 with the guide field examples and is also

present in the Harris equilibrium of Figure 3. The two parallel
ribbons of enhanced agyrotropy persist even after strong
reconnection is underway, with a third intervening ribbon
substructure straddling the exhaust lane in both directions.
[30] The possible utility of agyrotropy for finding a

reconnection current sheet with the hydrogen mass ratio
of mi/me = 1836 is illustrated in Figure 7; the two panels
contain different diagnostics relevant to the formation of
agyrotropic layers in CMR. Having evolved from an ion
scale antiparallel Harris equilibrium with background, the
top panel shows strong, bifurcated parallel ridges of electron
agyrotropy (with magnetic flux surfaces superposed) with
values peaking at easily measurable amplitudes of 0.5 that
would be accompanied by perpendicular electron tempera-
ture eigenvalues that differed by 70% (see Figure 2). While
the length of the rectangular jet region of the EDR is smaller
at this larger mass ratio, its length to width ratio is still large:
20. With resource limitations this simulation was quite small
(10 � 10)di and the simulation time was short; accordingly
it may not be the definitive length to width ratio that might
be achieved in larger/longer simulation. However, for our
present purposes this simulation illustrates that agyrotropy
is strong even in systems with the mass ratio relevant for
NASA’s upcoming MMS mission. Extensions of enhanced
agyrotropy also are seen to occur along the separatrices
(light purple) as in the previous examples at lower mass
ratios. Even the weak enhanced agyrotropy along the
separatrices is in strong contrast with the highly magnetized
(dark blue) (low agyrotropy) near gyrotropy recovered by
this analysis (via Appendix D) in the inflow region.
[31] The lower panel of Figure 7 hints at the driving force

behind the agyrotropy layers seen in the upper panel.
Illustrated there is the spatial variation of the angle between

Figure 7. (top) Agyrotropy obtained from open boundary simulation with hydrogen mass ratio (mi/me =
1836). (bottom) Lower panel illustrates the smallness of the angle between perpendicular E and the
closest perpendicular eigenvector of the electron pressure tensor in the region of strong agyrotropy
illustrated in the upper panel. Note that if the eigenvector’s phase becomes random (as in gyrotropy) or
the perpendicular electric field becomes weak and not well ordered that 22.5� is the ‘‘no signal’’ result.
This accounts for the common occurrence of red-orange colors in region where AØe is small and
becoming more gyrotropic.
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the perpendicular electric field and the closest perpendicular
principle axis of Pe

$$$$
. At the inflow sides of the diffusion

regions along the strong quasi-parallel ribbons of enhanced
agyrotropy, this angle becomes systematically smaller, with
perpendicular eigenvectors nearly aligned with the direction
of the perpendicular electric field. This angle remains small
throughout the enhanced rectangular jet region of the EDR
that extends in the horizontal directions and supports the
exhaust. Patterns of darker red can also be seen for this
angle out along the separatrices. Elsewhere, when the
electric field is either small or oriented at random with
respect to the perpendicular axes of the pressure tensor this
angle reverts to 22.5�, since the closest perpendicular
eigenvector is never farther than 45� away for any Ê?.
(When the plasma is nearly gyrotropic the orthogonal
eigenvectors associated with the nearly degenerate eigen-
values can always be found; the degeneracy of the
eigenvalues assures that the eigenvectors identified will
generally be phased at random in the plane perpendicular to
B; this degeneracy for the gyrotropic plasma leads to the
relatively widespread occurrence of the orange ‘‘default’’
regions with nearly 22.5�.)
[32] The lower panel in Figure 7 is consistent with the

premise that direct non-adiabatic interactions of the elec-
trons and the electric fields in these layers can preferentially
deform and locally sustain the velocity space agyrotropy
there and deform fe(v) with a pattern that is coherent on the
timescale of the forcing perpendicular electric fields. These
patterns evolve slowly and are not changing on the electron
gyroperiod as has been verified by determining their pat-
terns using individual output frames of the solution without
time averaging. The self-consistent PIC orbit simulations of
this paper substantiate the test particle Vlasov mappings and
suggestions of Scudder and Mozer [2005] that short scale
electric field layers detected with Polar might be able to
demagnetize the electrons in this way.
[33] It should be clear however, that neither the electric

field, agyrotropy nor velocity shear are by themselves
properly viewed as the cause or effect in these highly
structured and nonlinear flows, since they are part of a
slowly evolving quasi-equilibria. When describing this self
consistent situation, however, it is easier to see the electric
field as a force felt on individual electrons than that
supplied, for example, from velocity shear. The demonstra-
tion by Mahajan and Hazeltine [2000] that there are Vlasov
equilibria that are generalizations of the Harris equilibria
that require equilibrium AØe and electric fields in the
presence of velocity shear is suggestive of the possibility,
as seen in the PIC code, that there are slowly evolving
nearby Vlasov-like solutions such as these.

8. Summary and Discussion

[34] We have presented a variety of current layers where
reconnection is in progress as described in the most model
free way that 2-D kinetic simulations allow, including open
boundary conditions; in all of these layers there are pro-
nounced patterns of enhanced electron agyrotropy that
illuminate topological boundaries of the magnetic field that
are known from the vector potential. We have documented
the high precision of our ability to determine AØe from PIC
simulations and have established well defined procedures to

accomplish such determinations. We have also indicated the
patterns of AØe reveal a complicated non-convex region of
non-idealness that emanates from the separator and that
these patterns are distinctly different for X vs O points.
[35] Valid determinations of sizable AØe indicate a severe

disruption of the thermal electron gyromechanics. To our
knowledge there is no known mechanism for producing
agyrotropy short of recent time demagnetization of the
thermal electron gas. Such a diagnostic is an electron
specific, kinetic prerequisite for electrons in the EDR of
CMR that should be contrasted with the indirect tests of
magneto-fluid accelerations of the Walen type that find
quasi-Alfvenic rotational shear layers (resolved RDs) that
may or may not be the external flows of CMR.
[36] Agyrotropy is a scalar that can be determined from

measurements in one spatial locale, and does not require the
comparison of measurements in different locales, nor the
determination of a special direction to detect its size (as in
the ‘‘out of plane component of some vector’’). AØe also
provides the local observer with tags of non-idealness along
the time line of measurements, without (i) making a planar
model, or (ii) making the assumptions of Faraday Residue/
Walen tests, (iii) presaging the unknown third and assumed
ignorable direction to implement the E + Ue � Bj3, or (iv)
assuming strong E and maximum variance of E establishes
the geometry of the layer.
[37] Electron agyrotropy is ideal as a local marker for

electron scale layers warranting further study as part of the
reconnection layers in both 3-D PIC codes and spacecraft
data. Ancillary magneto fluid acceleration correlations in
the same locale as AØe would improve the false detections
of collisionless reconnection layers based on electron agyr-
otropy alone.
[38] The valid detection of electron agyrotropy on one

spacecraft first requires the routine statistical recovery by
the same instrument of small AØe. Only in this context will
larger values of AØe be noteworthy. Once such calibration
has been demonstrated to be routine, the collected electrons’
immediate prehistory becomes the ‘‘detector’’ of any and all
recent sub-electron gyro scale or super-gyro frequency
fluctuations encountered enroute to detection. It also can
reflect convolved errors of slow time acquisition across
spatial structures that may or may not be demagnetizing. At
this juncture the protections against aliasing need to be
studied on those events. If the prehistory is gyrotropic, the
previously calibrated detector is self nulling, returning a
very small agyrotropy.
[39] This paper has demonstrated the usefulness of care-

ful determinations of AØe for identifying current layers
comparable to the electron gyro scale which are thought
to be essential to CMR. We have also discussed that
defensible detections will require ingenuity and suitable
safeguards in telemetry acquisition to protect the possible
aliasing of the measurements. We have outlined several
classes of data collection that are more susceptible to this
type of problem than others. We have referenced our own
early attempts to address these issues with the Polar Hydra
detector that we know best. Unlike other recipes for finding
the non-idealized regions of the EDR, it is directly associated
with the demagnetization of the electron fluid in the plasma,
which would disrupt the electron fluid’s facile advection and
consistent labeling of magnetic field lines. Furthermore, this
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technique has more intrinsic sensitivity to non-idealness
that attempts to finite difference the electron pressure
tensors across multiple spacecraft, since such techniques
are limited by the finite difference error controlled by
typically ion scale of spacecraft separation, and the need
to control, document and remove the experimental vagaries
of potential, focusing, measurement and cross instrument
calibration for at least four different locations [Henderson
et al., 2006]. Even if all vehicles could be calibrated at the
same level of precision, the errors of finite differencing on
an ion inertial separation scales, looking for structures with
electron spatial scales, makes such an experimental deter-
mination uninterpretable.

Appendix A: Inferences of Agyrotropy From the
Full Pressure Tensor

[40] Any pressure tensor can always be diagonalized.
However, when the plasma is not gyrotropic there is no
guarantee that any of the eigenvectors will be aligned with
or perpendicular to the magnetic field direction, b̂. Since we
are explicitly interested in the departure from cylindrical
symmetry about the local magnetic field, we wish to
characterize the velocity distribution function’s weighted
average of dispersions of velocity vectors perpendicular to
the magnetic field in the electron’s zero momentum (center
of mass) frame. We are thus interested in the symmetric

tensor @
$
defined by

@ij ¼ m

Z Z Z
d3vf vð Þ w� b̂

� �
i
w� b̂
� �

j

�
X
q;r;l;m

eiqlejrmb̂qb̂rPlm ðA1Þ

which is related to the full pressure tensor usually saved in a
PIC code by the trailing identity. We have used w as the
velocity of the particle in the zero momentum frame and eijk,
the fully antisymmetric Levi-Civita tensor. The six unique
elements of @ij are related by (A1) to those of the usual
pressure tensor by the relations:

@xx ¼ bybyPzz � bybzPyz � bzbyPzy þ bzbzPyy

@xy ¼ �bybxPzz þ bybzPzx þ bzbxPyz � bzbzPyx

@xz ¼ bybxPzy � bybyPzx � bzbxPyy þ bzbyPyx

@yy ¼ bxbxPzz � bxbzPzx � bzbxPxz þ bzbzPxx ðA2Þ
@yz ¼ �bxbxPzy þ bxbyPzx þ bzbxPxy � bzbyPxx

@zz ¼ bxbxPyy � bxbyPyx � bybxPxy þ bybyPxx

[41] By construction one of the eigenvectors of @
$

is the
magnetic field direction with eigenvalue 0. Accordingly the

characteristic polynomial for the eigenvalues of @
$

must take
the form

l l2 � alþ b
� �

¼ 0: ðA3aÞ

where

a ¼ P?1 þ P?2

b ¼ P?1P?2 ðA3bÞ

However, the expressions for {a, b} are implied by the

eigenvalue problem for @
$

and are given by:

a ¼ @xx þ @yy þ @zz

� �
b ¼ � @2

xy þ @2
xz þ @2

yz � @xx@yy � @xx@zz � @yy@zz


 �
ðA3cÞ

and can be used to determine the remaining two non-trivial
eigenvalues that correspond to eigenvectors, x̂k that are
perpendicular to the magnetic field. These are:

lk� ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p
2

� 0; ðA4Þ

where the discriminant is given by the nonnegative
expression: a2 � 4b = (P?1 � P?2)

2. When P is gyrotropic
the discriminant vanishes. The two eigenvalues of (A3)
establish the ‘‘equivalent’’ dispersion ellipse of P in the plane
transverse to B, and should be identified with the two
extremal temperatures transverse to B. Accordingly the
agyrotropy at each spatial mesh location (i, j) of the simulation
can be defined in terms of these eigenvalues by

A�ij ¼ 2
lþ;ij � l�;ij



 


lþ;ij þ l�;ij

¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
ij � 4bij

q
aij

� 0 ðA5Þ

without recourse to eigenvalue or polynomial zeroing
subroutines. This algebra permits the parallel computation
across the simulation array of the dispersions transverse to B,
making agyrotropy a routine diagnostic across the PIC
simulation without generalized eigenvalue overhead. With
simulations as large as 2560 � 2560, there are in excess of
6 million eigenvalue problems per time step, so the above
efficiencies are enabling for this as a routine diagnostic.As PIC
codes move into 3-D, the need for speed in this diagnostic and
its role in finding diffusion regions makes speed all the more
imperative.

Appendix B: Scaling of AØ* With N When
Plasma Is Gyrotropic

[42] For this scaling study 3000 gyrotropic phase space
realizations were formed to understand the variation of
directly computed agyrotropy AØj

*(N) (using the approach
of Appendix A) as a function of the number N of simulation
particles used to form the underlying pressure tensor in the
PIC cell. If gyrotropic analytic Vlasov equilibria were
analyzed, their computed agyrotropy would vanish by strict
symmetry; thus any residual computational agyrotropy for
these macroparticle approximations is a type of noise
commingled with any physical agyrotropy that may be
present. To quantify the expected error versus N of the
same anisotropic, but gyrotropic, convecting velocity distri-
bution, thirty independent trials were performed with each of
100 logarithmically spaced numbers, N, of macro-particles/
cell. The underlying physical parameters of the Vlasov
distribution were held constant across all realizations.
For each trial AØj

*(N) was determined by the method of
Appendix A. In this way the j’th realization of the
‘‘discreteness’’ floor for agyrotropy, AØj

*(No, j) when
drawing No particles was determined, together with its
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average hLog AØ*f (No, j)ij and variance over the 30 different
trials when drawing the same number of particles. Figure B1
demonstrates the recovery of the expected inverse square root
dependence of the ‘‘discreteness’’ agyrotropy, together with a
least squares regression to power law variation that fits the
data very well. This variation is summarized by the relation
(with errors at 3s):

A�FLOOR Nð Þ ¼ 100:329�0:169N�:499�0:036 ðB1Þ

[43] We have also shown that this scaling is independent
of temperature, anisotropy, bulk speed and mach number
and, that the 3000 deviates from the best fit line in Figure 3
have a lognormal distribution. For a simulation with 2560 �
2560 cells and 1.5 billion particles, N in the average cell in a
uniform density simulation contains upwards of 228 par-
ticles. Initially the density is 4 times higher in the narrow
current layer, corresponding to somewhat less than 4 times
the typical occupation number, making a peak value for N
of approximately 900/cell. In practice, as many as three
successive output time frames for a given cell are time
averaged together to enhance the particle statistics without
degrading spatial resolution. In this way the peak effective
number of particles in some cells for agyrotropy estimates
can easily be upwards of 2700, lowering the discreteness
floor to 0.02 in the high density regions at the expense of
time resolution. Including box spatial averaging with W
cells on a side reduces this floor further to approximately
0.02/W. At other places in the simulation, however, dis-
creteness is more important because the density is non-
uniform and can become lower than average.

[44] If the discreteness contribution can be modeled and
understood as presented in Appendices C and D, the
recovery of even smaller agyrotropies is feasible, although
with higher reconstruction errors than those above 0.02/W.
Since the nonzero size of agyrotropy is used to determine
the spatial extent of the EDR [Karimabadi et al., 2007] it is
important to pursue reconstruction of the profile as the
gyrotropic regimes is approached. As can be seen in
Figure 1, the inflow regime to the separatrices (along the
vertical) is characterized by very low values of agyrotropy,
consistent with our theoretical view that the electrons advect
the field in this region and hence should be nearly gyro-
tropic with AØe # 0. Because the number of particles in a
given cell is dynamic across the simulation, a reconstruction
technique is required that can handle the case of a general
occupation number N; only in this way can the structure in
space be truly suggested to reflect that of the Vlasov fluid.
The reconstruction (discussed in Appendix D) can make a
significant correction for this discreteness floor when N is
smaller than when it is larger, as illustrated by the overlay of
the red and black ion curves in Figure 3 (top row) and
Figure D1. During reconnection in a Harris sheet a strong
density depression develops at the separator where we seek
to understand the microphysics. Lower occupation numbers
in the low density inflow to the current sheet will also
require significant remediation as has been achieved in
Figure 3 and Figure 1. Determinations of the spatial
variation of agyrotropy in these locales is also affected and
improved by the reconstruction corrections of Appendix D.
[45] After this discreteness correction the Vlasov inferred

agyrotropy is reduced at large distances from the current
sheet to quite small values and we do recover the extremely
weak agyrotropy of the Harris equilibrium suggested by the
red curve (in Figure 3) at large distances from the current
sheet. The initial electron agyrotropy in this mi/me = 100
equilibrium is down by a factor of 50 from that of the ions,
well beneath the floor of detectability, even after recon-
struction has been attempted. However, as the layer recon-
nects, velocity shears, electric fields and electron agyrotropy
build up to comparable amplitudes as those present in the
ions in the equilibrium, making the PIC diagnosis of these
layers possible at all but the earliest simulation times (see
Figure 1). Our reconstruction studies and others not pre-
sented here can be interpreted to say that PIC agyrotropies
in either species of the size reported in Figures 1 and 3 are
clearly detectable and the reconstructed spatial variations
(black curves in Figure 3) are indeed representative of the
smooth underlying Vlasov behavior.

Appendix C: Simple Model for Expected
Agyrotropy, AØ* in Terms of the Underlying
Vlasov Agyrotropy

[46] Assume for simplicity that the ‘‘true’’ underlying
Vlasov agyrotropy is denoted by AØ while in the presence
of Gaussian noise the computed agyrotropy would take on
the form:

A�* ¼

Z 1

�A�

A�þ dð Þ exp � d2

s2

� �
ddZ 1

�A�

exp � d2

s2

� �
dd

ðC1Þ

Figure B1. Summary of determination of ‘‘Discreteness’’
Agyrotropy, demonstrating inverse square root dependence
on N. At each N, 30 trials were performed with mean at the
diamond and error flag reflecting the variance.
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where the average taken presumes AØ + d � 0. In this
model the apparent agyrotropy AØ* is equal to

A�* ¼ A�þ sffiffiffi
p

p
exp � A�2

s2


 �
1þ Erf A�

s

� � ðC2Þ

Interpreting this result for the gyrotropic circumstance
where AØ = 0, yields the identification that

A�* A� ¼ 0ð Þ ¼ sffiffiffi
p

p ; ðC3Þ

Since Figure B1 provides the left hand side of (5), we obtain

s Nð Þ ¼ 2:5
ffiffiffi
p

p
N�1=2 ðC4Þ

Rescaling (C2) we obtain for the ij simulation cell the
convolving relationship:

A�*
ij

s Nij

� � ¼ A�ij

s Nij

� �þ 1ffiffiffi
p

p
exp � A�2

ij

s Nijð Þ2
� �

1þ Erf
A�ij

s Nijð Þ
ðC5Þ

[47] Assigning dummy variables (C5) takes on the obvious
functional form: Yij =Z (Xij), that is immediately amenable to
one dimensional inverse interpolation, since (C5) is a one to
one mapping. Thus

A�ij ¼ s Nij

� �
Z

�1
A�*

ij

s Nij

� �
 !

ðC6Þ

and the reconstruction is complete.

Appendix D: Full Up Model: Expected
Agyrotropy, AØ* in Terms of the Underlying
Vlasov Agyrotropy

[48] Below we retain the distinction in the text between
the agyrotropy AØ* available by direct manipulation of the
computed pressure tensor (Appendix A) and the likely
agyrotropy, AØ of the Vlasov fluid being simulated or
sampled.
[49] Considering each eigenvalue determination to be a

member of a log normal distribution, then

gj ¼ ln
P?j

P?j;o

is normally distributed in g, with most probable value P?j,0.
The expected average of such ‘‘noisy’’ determinations is
given by the expression

A�* ¼ 2

ps1s2

Z 1

�1
dg1

Z 1

�1
dg2

exp g1 � g2 þ Lð Þ � 1j j
exp g1 � g2 þ Lð Þ þ 1

� exp � g21
s2
1

� g22
s2
2

� �
;

L � ln
P10

P20

where the ? subscript has been suppressed. Assuming that
the s’s are identical so that agyrotropy can be lognormal as

well, and after change of variables c = g1 � g2; h = g2
(Jacobian is unity), this double integral can be reorganized
to a single integral of the form

A�* L A�ð Þ; sð Þ ¼ 2ffiffiffi
p

p
Z 1

�1
dG exp �G2

� �
tanh

sG
21=2

þ L
2

� �









ðD1Þ

This numerically tabulated function represents a summary
of the forward problem between states of definite Vlasov
agyrotropy emulated by N macro particles and the apparent
agyrotropy available via the moments and Appendix A.
This relation is depicted in Figure D1:
[50] Since L(AØ) = ln P1

P2
= ln 2þA�

2�A�, Vlasov gyrotropy

implies L = 0; the expected averaged floor for AØ* is only a
function of the local number of particles in the cell as
demonstrated in (D4) below:

A�*
Floor � A�* 0;s Nð Þð Þ ¼ 4p�1=2

Z 1

0

dG exp �G2
� �

tanh
sG
21=2

� �
ðD2Þ

This relation is illustrated by the red bounding curve in
Figure D1. Additionally, if s is appropriately small (D2)
may be approximated as:

A�* L ¼ 0;sð Þ ’ 4p�1=2

Z 1

0

dG exp �G2
� � sG

21=2

¼ 2sffiffiffiffiffiffi
2p

p
Z 1

0

dG exp �G2
� �

2G ¼
ffiffiffi
2

p

r
s; ðD20Þ

which when compared with the results of Appendix C
illustrates that the individual pressure sigmas (of the log
normal distributions so they are dimensionless!) is each half
of the sigma of the agyrotropy.
[51] From PIC trials (Figure B1) it has been demonstrated

that the directly computed agyrotropy for a random draw of
N particles from a parent gyrotropic distributions satisfies
the relation:

A�* �;0;þf g
PIC A�Vlasov ¼ 0ð Þ ¼ 2:5� 10 �:284;0;:284f gN�1=2: ðD3Þ

When (D2’) is valid we recover the expected relationship
that the sigma in the perpendicular pressures scales inversely
with square root of the number of particles involved in

emulating the distribution function s{�, 0, +} ’ 2.5
ffiffip
2

p
�

10{�.284,0,.284} N�1/2.
[52] Reconciling (D3) and (D2) determines three implicit

relationships for s (N) by the conditions:

2:5� 10 �:284;0;:284f gN�1=2

¼ 4p�1=2

Z 1

0

dG exp �G2
� �

tanh
s�;0;þ Nð ÞG

21=2

� �
ðD4Þ

In every PIC cell or plasma sensor observation, the number
N is known. From (D4) three values of s� ,o, + may be
determined from N by alternately using the mean and the
two three sigma extremes of the amplitude of the fit
synthesis embodied in (D3). In this way equation (D1) may
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be recast at each N as three implicit equations for three
relevant estimates of the Vlasov agyrotropy, AØ�,0,+:

A�*
PIC Nð Þ ¼ 2ffiffiffi

p
p
Z 1

�1
dG exp �G2

� �
� tanh

s�;0;þ Nð ÞG
21=2

þ
L A��;0;þ
� �

2

� �










� Z A��;0;þ;s�:0:þ
� �

: ðD5Þ

These three estimates are obtained by (3) inverse interpola-
tion interpolations:

which is feasible since (D5) is a one-one function over a
suitably wide range of apparent agyrotropy and sigmas
relevant to PIC and particle detectors in space (explicitly
determined in Figure D2 below). In this way two values
AØ± that bracket the most consistent value of Vlasov
agyrotropy AØ can be determined to associate with the
AØPIC

* (N) determined directly from the pressure tensor
using the methods of Appendix A. The reason for 3
estimates stems from the statistical character of (D2), there
being no unique prediction for the floor of agyrotropy at a
given N, just a highly likely range.
[53] Two dimensional, inverse interpolation via (D6)

allows the determination of the fractional error F expected
in the reconstructed Vlasov agyrotropy:

F ¼ Max jA�þ � A�0j; jA�� � A�0jf g
A�0

[54] This fraction is contoured in Figure D2 as a function
of(s0, AØ*). The bounding red curve that rises to the right
in the figure is the locus of conditions consistent with
Vlasov gyrotropy. At large values of s the bounding red
curve makes an abrupt trend reversal, now possessing a
negative slope. In this range the maximum value of AØ*(so)
at these values of so from equation (D1) is less than the
assumed value of AØ*, making the inverse interpolation
impossible. Accordingly, the region in this figure above and
to the left of the cusped red curve is the domain where the
original mapping is 1–1 and the reconstruction outlined
here has a unique solution.
[55] The general pattern for F in the 1–1 domain is that it

is smaller the further the observation is away from the
vertical rising portion of the bounding red curve, with
smallest values for largest AØ* and smallest s0, where it
can be as small as 10�7 rising to values near unity (green
contour) as the observations approach the limiting, rising
part of the red curve, where the unpacked Vlasov agyro-
tropy is zero. The fractional error rises as the rising red

Figure D1. Map of the function relating Vlasov agyro-
tropy, the discreteness of the emulation of the Vlasov fluid
and the apparent agyrotropy.

Figure D2. Illustrating typical regimes and errors for correcting the raw agyrotropy to the underlying
agyrotropy of the Vlasov fluid being simulated.

A��;0;þ ¼ Z
�1

A�*; s�;0;þ
� �

ðD6Þ
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bounding curve is approached and the precision of the
reconstruction is going down; however at the same time
the best estimate for Vlasov agyrotropy approaches zero at
that red boundary, causing the absolute error to remain small
in most quarters. It is this feature that allows the Harris sheet
agyrotropy to be recovered in Figure B1. The vertical cyan
lines in this figure reflect the operating point for a cell with
the indicated number of particles involved in determining its
moments. That number may be augmented as we have done
here by time averaging or grid spatial averaging. When
averaging over 3 output frames and a 7 � 7 grid our typical
runs are operating at the Neff ’ 66,000, explaining how the
recovered agyrotropy can have such small fractional errors
(provided the grid averaging did not smooth out actual
structure in the agyrotropy enroute).

[56] Acknowledgments. Discussions and manuscript comments by
Homa Karamibadi are gratefully acknowledged. This work is based on
work supported by the National Science Foundation under grant 0447423
and the Department of Energy grant DE-FC02-06ER54893 and NASA
grant NNG05GC28G.
[57] Amitava Bhattacharjee thanks the reviewers for their assistance in

evaluating this paper.

References
Bellan, P. M. (2006), Fundamentals of Plasma Physics, chap. 3, Cambridge
Univ. Press, New York.

Bessho, N., and A. Bhattacharjee (2005), Collisionless reconnection in an
electron-positron plasma, Phys. Rev. Lett., 95, 245001, doi:10.1103/Phys-
RevLett.95.245001.

Burlaga, L. F. (1995), Interplanetary Magnetohydrodynamics, Cambridge
Univ. Press, New York.

Chacon, L., et al. (2007), Steady state properties of driven magnetic recon-
nection in 2D electron MHD, Phys. Rev. Lett., 99, 235001.

Daughton, W., and H. Karimabadi (2007), Collisionless magnetic reconnec-
tion in a large scale electron-positron plasma, Phys. Plasma, 14, 072303,
doi:10.1063/1.2749494.

Daughton, W., J. D. Scudder, and H. Karimabadi (2006), Full kinetic simula-
tions of undriven magnetic reconnection with open boundary conditions,
Phys. Plasmas, 13, 072101, doi:10.1063/1.2218817.

Drake, J. F., M. Swisdak, M. Shay, B. N. Rogers, A. Zeiler, and C. Cattell
(2002), Development of electron holes and anomalous resistivity in 3-D
magnetic reconnection, 2002AGUFMSM51C.03D.

Golant, V. E., A. P. Zhilinsky, and I. E. Sakharov (1980), Fundamentals of
Plasma Physics, 252 pp., Wiley Interscience, New York.

Harris, E. G. (1962), On a plasma sheath separating regions of oppositely
directed magnetic field, Nuovo Cim., 23, 115 – 121, doi:10.1007/
BF02733547.

Hasegawa, A. (1975), Plasma Instabilities and Non-Linear Effects, 83 pp.,
Springer, Berlin.

Hazeltine, R. D., and F. L. Waelbroeck (1998), The Framework of Plasma
Physics, 14 pp., Perseus, Reading.

Henderson, P. D., C. J. Owen, A. D. Lahiff, I. V. Alexeev, A. N. Fazakerly,
E. Lucek, and H. Reme (2006), Cluster PEACE observations of the
electron pressure tensor divergence in the magnetotail, Geophys. Res.
Lett., 33, L22106, doi:10.1029/2006GL027868.

Hesse, M., D. Winske, and M. Kuznetsova (1995), Hybrid modeling of
collisionless reconnection in two-dimensional current sheets: Simula-
tions, J. Geophys. Res., 100, 21,815, doi:10.1029/95JA01559.

Hesse, M., K. Schindler, J. Birn, and M. Kuznetsova (1999), The diffusion
region in collisionless magnetic reconnection, Phys. Plasma, 6, 1781.

Holdaway, R., J. Scudder, S. Li, and R. Glassberg (2008), False positive
signatures of agyrotropy caused by gradients, Eos Trans. AGU, 88(52),
Fall Meet. Suppl., Abstract SH44A–1710.

Karimabadi, H., W. Daughton, and J. D. Scudder (2007), The multiscale
structure of the electron diffusion region, Geophys. Res. Lett., 34,
L13104, doi:10.1029/2007GL030306.

Kuznetsova, M., M. Hesse, and D. Winske (1998), Kinetic, quasi-viscous
and bulk flow inertial effects in collisionless magnetic reconnection,
J. Geophys. Res., 103, 199, doi:10.1029/97JA02699.

Lemaire, J., and L. F. Burlaga (1976), Diamagnetic boundary layers—A
kinetic theory, Astrophys. Space Sci., 45, 303 – 325, doi:10.1007/
BF00642667.

Mahajan, S. M., and R. D. Hazeltine (2000), Sheared-flow generalization of
Harris sheet, Phys. Plasma, 7(4), 1287.

Mozer, F. S. (2005), Criteria for and statistics of electron diffusion regions
associated with sub solar magnetic field reconnection, J. Geophys. Res.,
110, A12222, doi:10.1029/2005JA011258.

Parker, E. N. (1957), Newtonian development of the dynamic properties of
ionized gases of low density, Phys. Rev., 107, 924–933, doi:10.1103/
PhysRev.107.924.

Paschmann, G., B. U. O. Sonnerup, I. Papamasterakis, N. Sckopke,
G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, C. T. Russell, and
R. C. Elphic (1979), Plasma acceleration at the earth’s magnetopause,
evidence for reconnection, Nature, 282, 243, doi:10.1038/282243a0.

Phan, T. D., G. Paschhmann, C. Twitty, F. S. Mozer, J. T. Gosling, J. P.
Eastwood, M. Oieroset, H. Reme, and E. A. Lucek (2007), Evidence for
magnetic reconnection initiated in the magnetosheath, Geophys. Res.
Lett., 34, L14104, doi:10.1029/2007GL030343.

Pritchett, P. L. (2001), Geospace Modeling magnetic reconnection chal-
lenge: Simulation with a full particle electromagnetic code, J. Geophys.
Res., 106, 3783, doi:10.1029/1999JA001006.

Ricci, P., J. U. Brackbill, W. Daughton, and G. Lapenta (2004), Influence of
the lower hybrid drift instability on the onset of magnetic reconnection,
Phys. Plasmas, 11, 4102, doi:10.1063/1.1768552.

Rogers, B. N., R. E. Denton, J. F. Drake, and M. A. Shay (2001), Role of
dispersive waves in collisionless reconnection, Phys. Rev. Lett., 87,
195004, doi:10.1103/PhysRevLett.87.195004.

Rossi, B., and S. Olbert (1970), Introduction to the Physics of Space,
p. 121ff., McGraw-Hill, New York.

Scudder, J. D. (1997), Theoretical approaches to the description of magnetic
merging: The need for finite be, anisotropic, ambipolar hall MHD, Space
Sci. Rev., 80, 235–267, doi:10.1023/A:1004978021644.

Scudder, J. D., and F. S. Mozer (2005), Electron demagnetization and
collisionless plasma in be < 1 plasmas, Phys. Plasmas, 12, 092903,
doi:10.1063/1.2046887.

Scudder, J. D., et al. (1995), Hydra—A 3-dimensional electron and ion hot
plasma instrument for the polar spacecraft on the GGS mission, Space
Sci. Rev., 71, 459–495, doi:10.1007/BF00751338.

Scudder, J. D., F. S. Mozer, N. C. Maynard, and C. T. Russell (2002),
Fingerprints of collisionless reconnection at the separator: I. Ambipolar
Hall signatures, J. Geophys. Res., 107(A10), 1294, doi:10.1029/
2001JA000126.

Scudder, J. D., S. Li, W. Daughton, R. Holdaway, and R. Glassberg (2008),
Direct detection of electron demagnetization and agyrotropy at electron
diffusion regions, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract
SH43A–05.

Shay, M., J. Drake, B. Rogers, and R. Denton (2001), Alfvenic collisionless
magnetic reconnection and the Hall term, J. Geophys. Res., 106, 3759.

Shay, M. A., J. F. Drake, and M. Swisdak (2007), Two scale structure of the
electron dissipation region during collisionless magnetic reconnection,
Phys. Rev. Lett., 99, 155002, doi:10.1103/PhysRevLett.99.155002.

Sonnerup, B. U. O., G. Paschmann, I. Papamastorakis, N. Sckopke,
G. Haerendel, S. J. Bame, J. R. Asbridge, J. R. Gosling, and C. T. Russell
(1981), Evidence for magnetic field reconnection at the earth’s magneto-
pause, J. Geophys. Res., 86, 10049, doi:10.1029/JA086iA12p10049.

Vasyliunas, V. M. (1975), Theoretical models of magnetic field line merging,
1, Rev. Geophys., 13, 303–336, doi:10.1029/RG013i001p00303.

Walen, C. (1944), On the theory of sunspots, Ark. Mat. Astron. Fys., 30A,
15.

�����������������������
W. Daughton, Los Alamos National Laboratory, Los Alamos, NM 87545,

USA.
J. Scudder, Department of Physics and Astronomy, University of Iowa,

Iowa City, IA 52240, USA. (jack-scudder@uiowa.edu)

A06222 SCUDDER AND DAUGHTON: ELECTRON DIFFUSION REGION AND AGYROTROPY

16 of 16

A06222


